Differential Corticostriatal Plasticity during Fast and Slow Motor Skill Learning in Mice

نویسندگان

  • Rui M. Costa
  • Dana Cohen
  • Miguel A.L. Nicolelis
چکیده

BACKGROUND Motor skill learning usually comprises "fast" improvement in performance within the initial training session and "slow" improvement that develops across sessions. Previous studies have revealed changes in activity and connectivity in motor cortex and striatum during motor skill learning. However, the nature and dynamics of the plastic changes in each of these brain structures during the different phases of motor learning remain unclear. RESULTS By using multielectrode arrays, we recorded the simultaneous activity of neuronal ensembles in motor cortex and dorsal striatum of mice during the different phases of skill learning on an accelerating rotarod. Mice exhibited fast improvement in the task during the initial session and also slow improvement across days. Throughout training, a high percentage of striatal (57%) and motor cortex (55%) neurons were task related; i.e., changed their firing rate while mice were running on the rotarod. Improvement in performance was accompanied by substantial plastic changes in both striatum and motor cortex. We observed parallel recruitment of task-related neurons in both structures specifically during the first session. Conversely, during slow learning across sessions we observed differential refinement of the firing patterns in each structure. At the neuronal ensemble level, we observed considerable changes in activity within the first session that became less evident during subsequent sessions. CONCLUSIONS These data indicate that cortical and striatal circuits exhibit remarkable but dissociable plasticity during fast and slow motor skill learning and suggest that distinct neural processes mediate the different phases of motor skill learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corticostriatal dynamics encode the refinement of specific behavioral variability during skill learning

Learning to perform a complex motor task requires the optimization of specific behavioral features to cope with task constraints. We show that when mice learn a novel motor paradigm they differentially refine specific behavioral features. Animals trained to perform progressively faster sequences of lever presses to obtain reinforcement reduced variability in sequence frequency, but increased va...

متن کامل

Exercise-Induced Fatigue Impairs Bidirectional Corticostriatal Synaptic Plasticity

Exercise-induced fatigue (EF) is a ubiquitous phenomenon in sports competition and training. It can impair athletes' motor skill execution and cognition. Corticostriatal synaptic plasticity is considered to be the cellular mechanism of movement control and motor learning. However, the effect of EF on corticostriatal synaptic plasticity remains elusive. In the present study, using field excitato...

متن کامل

Adenylyl cyclase type 5 contributes to corticostriatal plasticity and striatum-dependent learning.

Dopamine (DA)-dependent corticostriatal plasticity is thought to underlie incremental procedural learning. A primary effector of striatal DA signaling is cAMP, yet its role in corticostriatal plasticity and striatum-dependent learning remains unclear. Here, we show that genetic deletion of a striatum-enriched isoform of adenylyl cyclase, AC5 knock-out (AC5KO), impairs two forms of striatum-depe...

متن کامل

Dopamine-dependent motor learning: insight into levodopa's long-duration response.

OBJECTIVE Dopamine (DA) is critical for motor performance, motor learning, and corticostriatal plasticity. The relationship between motor performance and learning, and the role of DA in the mediation of them, however, remain unclear. METHODS To examine this question, we took advantage of PITx3-deficient mice (aphakia mice), in which DA in the dorsal striatum is reduced by 90%. PITx3-deficient...

متن کامل

Interactions Among Learning Stage, Retention, and Primary Motor Cortex Excitability in Motor Skill Learning

BACKGROUND Previous studies have shown that primary motor cortex (M1) excitability is modulated by motor skill learning and that the M1 plays a crucial role in motor memory. However, the following questions remain: (1) At what stage do changes in M1 excitability occur? (2) Are learning-induced changes in leg M1 excitability associated with motor memory? Here, we did two experiments to answer th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2004